Technical Document
Specifications
Maximum Continuous Collector Current
21 A
Maximum Collector Emitter Voltage
450 V
Maximum Gate Emitter Voltage
±14V
Maximum Power Dissipation
150 W
Package Type
TO-220AB
Mounting Type
Through Hole
Channel Type
N
Pin Count
3
Transistor Configuration
Single
Dimensions
10.67 x 4.7 x 16.3mm
Minimum Operating Temperature
-40 °C
Maximum Operating Temperature
+175 °C
Product details
Discrete IGBTs, Fairchild Semiconductor
IGBT Discretes & Modules, Fairchild Semiconductor
The Insulated Gate Bipolar Transistor or IGBT is a three-terminal power semiconductor device, noted for high efficiency and fast switching. The IGBT combines the simple gate-drive characteristics of the MOSFETs with the high-current and low–saturation-voltage capability of bipolar transistors by combining an isolated gate FET for the control input, and a bipolar power transistor as a switch, in a single device.
$ 27.55
$ 2.755 Each (Supplied in a Tube) (ex VAT)
Production pack (Tube)
10
$ 27.55
$ 2.755 Each (Supplied in a Tube) (ex VAT)
Production pack (Tube)
10
Stock information temporarily unavailable.
Please check again later.
quantity | Unit price | Per Tube |
---|---|---|
10 - 95 | $ 2.755 | $ 13.78 |
100 - 495 | $ 2.262 | $ 11.31 |
500 - 995 | $ 1.906 | $ 9.53 |
1000+ | $ 1.679 | $ 8.39 |
Technical Document
Specifications
Maximum Continuous Collector Current
21 A
Maximum Collector Emitter Voltage
450 V
Maximum Gate Emitter Voltage
±14V
Maximum Power Dissipation
150 W
Package Type
TO-220AB
Mounting Type
Through Hole
Channel Type
N
Pin Count
3
Transistor Configuration
Single
Dimensions
10.67 x 4.7 x 16.3mm
Minimum Operating Temperature
-40 °C
Maximum Operating Temperature
+175 °C
Product details
Discrete IGBTs, Fairchild Semiconductor
IGBT Discretes & Modules, Fairchild Semiconductor
The Insulated Gate Bipolar Transistor or IGBT is a three-terminal power semiconductor device, noted for high efficiency and fast switching. The IGBT combines the simple gate-drive characteristics of the MOSFETs with the high-current and low–saturation-voltage capability of bipolar transistors by combining an isolated gate FET for the control input, and a bipolar power transistor as a switch, in a single device.