Technical Document
Specifications
Maximum Continuous Collector Current
21 A
Maximum Collector Emitter Voltage
450 V
Maximum Gate Emitter Voltage
±14V
Maximum Power Dissipation
150 W
Package Type
TO-220AB
Mounting Type
Through Hole
Channel Type
N
Pin Count
3
Transistor Configuration
Single
Dimensions
10.67 x 4.7 x 16.3mm
Minimum Operating Temperature
-40 °C
Maximum Operating Temperature
+175 °C
Product details
Discrete IGBTs, Fairchild Semiconductor
IGBT Discretes & Modules, Fairchild Semiconductor
The Insulated Gate Bipolar Transistor or IGBT is a three-terminal power semiconductor device, noted for high efficiency and fast switching. The IGBT combines the simple gate-drive characteristics of the MOSFETs with the high-current and low–saturation-voltage capability of bipolar transistors by combining an isolated gate FET for the control input, and a bipolar power transistor as a switch, in a single device.
Stock information temporarily unavailable.
Please check again later.
€ 118.76
€ 2.375 Each (In a Tube of 50) (ex VAT)
50
€ 118.76
€ 2.375 Each (In a Tube of 50) (ex VAT)
50
Buy in bulk
quantity | Unit price | Per Tube |
---|---|---|
50 - 50 | € 2.375 | € 118.76 |
100 - 450 | € 1.947 | € 97.35 |
500 - 950 | € 1.641 | € 82.05 |
1000 - 2450 | € 1.493 | € 74.63 |
2500+ | € 1.456 | € 72.78 |
Technical Document
Specifications
Maximum Continuous Collector Current
21 A
Maximum Collector Emitter Voltage
450 V
Maximum Gate Emitter Voltage
±14V
Maximum Power Dissipation
150 W
Package Type
TO-220AB
Mounting Type
Through Hole
Channel Type
N
Pin Count
3
Transistor Configuration
Single
Dimensions
10.67 x 4.7 x 16.3mm
Minimum Operating Temperature
-40 °C
Maximum Operating Temperature
+175 °C
Product details
Discrete IGBTs, Fairchild Semiconductor
IGBT Discretes & Modules, Fairchild Semiconductor
The Insulated Gate Bipolar Transistor or IGBT is a three-terminal power semiconductor device, noted for high efficiency and fast switching. The IGBT combines the simple gate-drive characteristics of the MOSFETs with the high-current and low–saturation-voltage capability of bipolar transistors by combining an isolated gate FET for the control input, and a bipolar power transistor as a switch, in a single device.